

fischertechnik Robo Interface

&

"C"

Instructions for Use of the
Renesas C Compiler for the Robo Interface

Version 1.66a
Status: May 15, 2006

Version Interface Firmware: 1.66.0.3
Version Renesas High Performance Embedded Workshop: 4.00.03.001

Knobloch GmbH
Weedgasse 14

55234 Erbes-Büdesheim

entwicklung@knobloch-gmbh.de
www.knobloch-gmbh.de

mailto:entwicklung@knobloch-gmbh.de

Fischertechnik C Compiler for Robo Interface

 Page 2 of 32 Pages

1 Table of Contents
1 Table of Contents ...2
2 Preface ...3
3 Robo Interface & "C" ..3
4 PC Interfaces..4

4.1 General...4
4.2 Several USB Intefaces on one Computer...4

5 Installation of the Development Environment ...6
6 Five Steps to the First C Program ..7
7 Generating a New Project ..14
8 Instructions for Programing ..23
9 Low Level Programing..23
10 The Transfer Area ..24

10.1 Digital Inputs E1-E32..24
10.2 Special Inputs...24
10.3 Analog Inputs ...24
10.4 16 Bit Timer ..24
10.5 Outputs...25
10.6 Installed Expansions Mode...25

11 Calling Up Firmware ...26
11.1 void SetFtDeviceReset ()..26
11.2 void SetFt1msTimerTickAddress() ...26
11.3 void SetFtDeviceCommMode () ...27
11.4 void GetRfParameter () ..27
11.5 void ClearFtMessageBuffer ()...27
11.6 void SetFtMessageReceiveAddress () ...28
11.7 BYTE SendFtMessage ()..28
11.8 void FtDelay (UINT)..29
11.9 void SetFtDistanceSensorMode ()..30

12 Communication...31
12.1 Serial Messages...31
12.2 Firmware Support ...31
12.3 Receiving Messages ..32

13 Debugging ..32
14 Revision..32

Fischertechnik C Compiler for Robo Interface

 Page 3 of 32 Pages

2 Preface

The Robo Interface has a 16 bit microprocessor from the M16C series from the
manufacturer, Renesas, type M30245, This provides a complete development
environment under the name "High Performance Embedded Workshop." Since the
development of these professional tools is very expenditure intensive, but, on the other
hand, they are only used by a "small" development group, the purchase price of 2000
euros and more for such a version is certainly normal.

Renesas has introduced a new license model with the current version 4. You can use the
developer package without limitations for a period of 60 days after the first installation.
After this, the compiler only creates programs with a maximum size of 64 Kbyte. This code
size should be more than sufficient for most of the fischertechnik projects. This allows you
to use a professional tool with a lot of possibilities at no cost.

Due to the size of the installation file, which is about 80 Mbyte, it is not contained in this
package. You can download the software in the Internet directly from Renesas. If you do
not have suitable Internet access, you can order a CD with the installation file from the
fischertechnik Individual Parts Service at (vertrieb@knobloch-gmbh.de or www.knobloch-
gmbh.de. You can obtain the CD at a price of 1.00 euros plus the normal service charge
for processing and shipping. Item number for the CD is 79028 status as of January 2006.

In addition to the installation file for the development environment, the data package
FtCComp.ZIP is required. In addition to these instructions, this data package also contains
example programs and a program (FtLoader) to allow you to store the program file, which
is created by the C Compiler, in the interface. This file is also contained on the CD. In
addition, the FtLib is also on the CD.

The example programs are also intended to serve as the basis for your own projects. With
this information, the programer with C basic knowledge can create C programs and store
these in the interface. However, there are some dangers here, which we will discuss in the
chapter, "Low Level Programing."

3 Robo Interface & "C"

Up to three programs can be stored in the Robo Interface per download. Program 1 and
program 2 are permanently stored in a flash memory and a third program can be stored in
the RAM. The RAM is erased when a flash program is started and if a power outage
occurs on the interface.

The selection of the active program is done with the program button. If this button is
pressed for longer than 0.5 seconds, the desired program can be selected. The program
LED for programs 1 and 2 light up sequentially. If a program is stored in the RAM, this is
indicated by the illumination of both LEDs. If the memory location is empty, then the
corresponding program cannot be run.
To start or stop the program, which is displayed, you must press the program button for a
short time (< 500ms). Programs can also be started or stopped through the PC interface
with the program, FtLoader.

mailto:vertrieb@knobloch-gmbh.de

Fischertechnik C Compiler for Robo Interface

 Page 4 of 32 Pages

4 PC Interfaces

4.1 General
The selection of the interfaces is done by pressing a button on the Robo Interface. After it
is turned on the "AutoScan" mode is active. The USB, serial interface and the radio
module (if installed) are checked to see if the data are available. This condition is indicated
by the illumination of the interface LEDs.

When an interface transmits data then the other interfaces are blocked. The active
interface blinks to indicate the transfer of data. If no data flow over the active interface for
longer than 300 ms, the AutoScan mode is switched on again.

If you press the "Port" button, then the next mode is selected according to the following
table.

 1. AutoScan USB serial radio1

 2. AutoScan USB serial
 3. USB
 4. Serial
 5. IR direct

1
This mode is only activated if the radio module is installed.

If the port button is pressed for more than three seconds, the interface switches to the
"intellgent interface online mode." The serial interface then works with the parameters
9600,n,8,1. To show the mode, the "SER" LED blinks very fast. In this mode, the interface
acts like an intelligent interface in the online mode. However, no programs can be
downloaded. If you press on the "Port" button, the AutoScan mode is set again.

In the passive movde, the active Robo Interface is controlled through a serial interface
(RS232), the USB or radio.

4.2 Several USB Intefaces on one Computer

In order to operate several interfaces on the USB, first each interface must be assigned its
own serial number. As a standard, all interfaces are delivered with the same serial number
in order to avoid problems with the exchange of interfaces. The Windows operating
system, however, recognizes only those interfaces with different serial numbers. For
"each" serial number, the corresponding driver is installed. To do this with Windows 2000
or XP, administrator rights are necessary.

Therefore, as a standard, all ROBO Interfaces and ROBO I/O Extensions are delivered
with the same serial number. As long as only one interface is used on a computer, there
are no problems, if the interfaces are operated on different computers. The computer
differentiates the products by their names such as ROBO Interface, ROBO I/O Extension
and Robo RF DataLink and their particular serial number. Therefore, a Robo interface and
a Robo I/O extension can be operated at the same time on a computer without changing
the serial number because these are different products.

Fischertechnik C Compiler for Robo Interface

 Page 5 of 32 Pages

However, if several of the same products such as Robo Interfaces are to be operated on
one computer through the USB, then before this is done the serial numbers of the
interfaces must be changed so that these are seen as different by the computer.

Note! If connected to the serial interface on the computer, then no serial numbers must be
changed.

The interface has therefore stored two serial numbers. Using the software, the setting can
be made to have the standard serial number "1" be active or the device serial number "2,"
which the manufacturer programs, to be active when the device is turned on.

The changing of the serial number can be done using the software FtDiag.exe, RoboPro or
the function, GetFtDeviceSetting() or SetFtDeviceSetting() of the FtLib.

To change the serial number, only one product may be connected to the USB because
otherwise the computer cannot recognize the difference between them. In FtDiag.exe, call
up "SCAN USB" and then click on the "USB Device" button and then go to the menu
Properties/Setup. In this window, you can set the desired serial number, which will be
active after you turn it on the next time.

Caution: If the serial number is changed, then the next time the interface is turned on, the
Windows driver may have to be reinstalled. To do this with Windows 2000 or XP
administrator rights are necessary. If you don't have these, you can't install the driver and
thus you would not be able to access the interface through the USB. In this case, you can
press and hold the PROG button when you turn on the interface. The interface then uses
the serial number "1" and is then recognized by the installed driver, for example, to change
the serial number to permissible values.

Note! The serial numbers, which are printed on the products, are hex numbers.

Even, if the USB "theoretically" allows up to 127 devices, practice has shown that with
Windows XP with SP1 on a three GHz Pentium 4 only about four to five products can be
reliably operated parallel, which means that updating time for the transfer area is a
maximum of 10 ms. With Windows 98, this is up to 10 devices. This is due to the fact that
the internal Windows drivers for the motherboard hardware under XP are not optimized for
"real time applications." Therefore, it is more useful to connect IO extensions to the Robo
Interfaces instead of each product individually to the USB.

Fischertechnik C Compiler for Robo Interface

 Page 6 of 32 Pages

5 Installation of the Development Environment

The installation environment can be downloaded at the following link:

http://eu.renesas.com/fmwk.jsp?cnt=quicklink_updates_product_child.htm&fp=/products/tools/
coding_tools/c_compilers_assemblers/m3t_nc30wa/child_folder/&title=QuickLink%20Updates

You can also find this link in the file ""Link.txt" of the FtCComp.zip and this will save you
the tiresome copying.

Almost 80 MB of the "hew4_nc30" packet must be downloaded.
This is the "Renesas C Compiler Package for M16C family V.5.4.00 Release 00 with High
Performance Embedded Workshop (HEW) V.4".

Note!
It is possible that Renesas may change this link if a new version is made available. Then
you must look for the development environment for M16C/24 (M16C/20 series) on the
Renesas Website. Up to now, you could download the C Compiler without registering.
However, since you can only download from the Japanese site if you register, it is possible
that "Renesas Europe" will likely require this as well.

You can also find alternative addresses (where available) in the file "Link.txt."

The precise installation of the package is described in separate instructions in the file
"Renesas-Install.pdf."

Fischertechnik C Compiler for Robo Interface

6 Five Steps to the First C Program
After the Renesas development environment has been installed, the FtCComp example
programs can be copied to the harddrive in a separate folder. In these instructions, we use
the folder c:\FtCComp for the following examples. We have the contents of the
FtCComp.zip file unzipped there.

The following five steps show the path to the first C program in the Robo Interface.

Important Information
The Robo interface must have the firmware 01.58.00.03 or higher because otherwise there is no
support for own programs in the firmware.

1. Start the Renesas development environment, "High Performance Embedded

Workshop," and through "File / Open Workshop" load the file "Blink.hws" in the folder
"C:\FtCComp\Demo\Blink."

 If you have installed the example files in another folder, you will receive a message that

the file was stored in a different folder and has now been moved. You can continue by
pressing "Yes."

 Page 7 of 32 Pages

Fischertechnik C Compiler for Robo Interface

2. Now compile the example program by clicking on the button, "Build All," (left next to

"Debug") or use "Build / Build All" in the menu bar (key "F7" also works).

 In the lower output window, some messages are now running through very quickly.

When the compiler and the linker are finished, "0 Errors" should appear there. As soon
as the trial period of 60 days has expired, a "warning" always appears that tells you that
only programs with a size of 64 k can be generated.

- The actual program for the Robo Interface is stored in the file "Blink1.hex" in the folder

"C:\FtCComp\Demo\Blink\Blink1\Debug."

 Page 8 of 32 Pages

Fischertechnik C Compiler for Robo Interface

3. Start the program, FtLoader.exe, which is located in the folder, FtCComp. The program

file is stored in the interface with this program.
After the interface is connected to the computer and is supplied with power, the program
can be stored in the interface.

 In this example, the interface is connected to a USB and if you click on the "Scan USB"

button, a search is made for all interfaces. Following this, mark the desired interface so
that it is highlighted.

The program now queries the current memory areas of the interface and shows the
values as information in the "Memory Values" window. In the lower window, "Memory
Blocks," the status of the three memory areas of the interface is shown. A name with a
maximum of 80 characters can be stored for each program.

 Page 9 of 32 Pages

Fischertechnik C Compiler for Robo Interface

4. Now open the file, "Blink1.hex," in the folder "C:\FtCComp\Demo\Blink\Blink1\Debug" by

pressing the "Read *.hex File" button.

- The file is read in and using the addressses it is automatically determined, for which

memory area the program is intended. In this example for the area "Flash 1". A name
with up to 80 characters can be stored as a descriptive text.

 Page 10 of 32 Pages

Fischertechnik C Compiler for Robo Interface

5. The download button stores the program in the interface together with the name and the

display is also updated. The program is now stored in the memory location "Flash 1." It
can be started with the "Prg F1 Start" button and ended with "Stop."

Congratulations!
You have now created "your" first program and stored it in the interface.

On the next page, we will make a closer examination of the way that the "Blink1"
program works.

 Page 11 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- By clicking on the file name "Blink1.c," we open the program file. This is shown in the

window on the right.
Two important lines follow the description, which is displayed in green:

 #include "TA_Firmware\TAF_00D.h"
 #include "TA_Firmware\TAF_00P.h"

 In the header file "TAF_00D.h," there is a definition of the "transfer area," a data

structure, through which the program "communicates" with the hardware in the
interface.

 In the header file "TAF_00P.h," there is a definition of the firmware macros to call up

functions within the firmware.

 Both of these files must therefore be contained in every program. In addition, the file

"TAF_00.c" must be added to every program. You can find this in the area on the left
under "C source files."

 Page 12 of 32 Pages

Fischertechnik C Compiler for Robo Interface

 Page 13 of 32 Pages

UCHAR main(void)
{
 // New PWM for Outputs
 sTrans.MPWM_Main[0] = 8; // PWM for Output O1

 // New Value for Outputs
 // Output PWM update (0x01=always, 0x02=once)
 // Base+0xE1: | 0 | 0 | 0 | 0 | 0 | 0 |ONCE|ALWA|
 sTrans.MPWM_Update = 0x01; // Update PWM values every 10ms

 do
 {
 sTrans.M_Main = 0x01; // switch Output O1 ON
 FtDelay(500); // Wait 500ms
 sTrans.M_Main = 0x00; // switch Output O1 OFF
 FtDelay(500); // Wait 500ms
 }
 while ((sTrans.E_Main & 0x01) == 0);

 return (0); // number of "Error - LED" blink times (0..5) after
 // program is finished
 // With >5, the ERROR Led starts continously blinking.
 // You can stop this with pressing the Interface PROG Switch.
}

- The "actual" program "main" starts after both header files.

 sTrans.MPWM_Main[0] = 8; // PWM for Output O1

 First, the speed value "8" is assigned to the output 1.

 sTrans.MPWM_Update = 0x02; // Update PWM values only one time

 Since the calculation of the PWM values for the control of the outputs takes some time,
the firmware must be notified when a new calculation is to take place. This is now done
in this line. With the value 0x01, the firmware recalculates the PWM values every 10 ms
and for the value 0x02 only one time. The bit is erased after the calculation.

 In the following do..while loop, output 1 is turned on and off for 500 ms. As soon as

the input I1 is set, the program is ended. With the return instruction, a numerical value
can be transmitted to the firmware, which decides how often the red error LED is to
blink. For "0" it remains off, 1 to 5 corresponds to the number of blinks and for a value of
>5 the LED blinks continuously until the "PROG" button is pressed one time.

Fischertechnik C Compiler for Robo Interface

7 Generating a New Project

- If a project is opened, close the current workspace (File / Close Workspace) in the High

Peformance Embedded Workshop (HEW).
- Create a new workspace (File / New Worspace)

- First, you should select the folder,for example, c:\FtCComp.
- In this example, we give the workspace the name "Blink" and the "Blink" folder in the

"FtCComp" directory is automatically recommended.
- We name the project "Blink1".
- The CPU family is "M16C" and the tool chain is "Renesas M16C Standard."

- At this point, the CPU series "M16C/20" with the CPU group "24" must be selected.

Then press "Next."
With "Finish" some settings are not queried, but we need these.

 Page 14 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- The "Target type" must now be set to "M16C/20" and the "Startup file type" to "USER."

Then select "Finish."

- The summary appears and with "OK" the project is generated.

 Page 15 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- The C Compiler needs some specific files for Robo Interface for the later C program and
these files are located in the folders "StartupCode" and "TA_Firmware" for the
examples.

- Now, copy these folders with Windows Explorer to the "Blink" directory in

C:\FtCComp\Blink\Blink1.

- The project must now be notified of these files. The start files can be added with a right

mouse click on the project name "Blink1" and selecting "Add Files" from the menu.

 Page 16 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- The "Add Files" menu opens. Here, change to the folder "StartupCode" and mark only

the file "ncrt0.a30." The other two files "ProgNr.inc and sect30.inc" are not to be
marked.

- Use the "Add" button to add this file to the project.

- Depending on the file type, the "Add" function adds the file to a corresponding folder in

the project tree. The files are "analyzed" at the same time by the "Add" function. You
can recognize this in that both include files "ProgNr.inc and sect30.inc" are in the
"Dependencies" folder.
Note! In the FtCComp examples, some folders were created and the files were correspondingly
structured. In this example, we retain the automatic order.

 Page 17 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- In the next step, the files from the TA_Firmware folder are to be added. Here, you also
click with the right mouse button on the project name "Blink1" and "Add Files" to add the
TA_Firmware files.

- The "Add Files" menu opens. Here, change to the folder "TA_Firmware" and mark only

the file "TAF_00.c." The other files are not marked.

- Use the "Add" button to add this to the project.

 Page 18 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- Now the development environment must be notified that we require the output file in the

"HEX" format. For this purpose, open "Build / Renesas M16C Standard Toolchain."

- In the tab "Lmc" in the category "Output," the "Converts file into Intel HEX format" must

be selected.

- Confirm the "Warning" information with "OK."
- Then, confirm the setting on the "Lmc" tab with "OK."

 Page 19 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- Now that this "preliminary work" has been completed, the "actual" programing can start.
To do this, double click with the left mouse button on the "C source file" file "Blink1.c."

- The file opens in the window on the right. This was created automatically when the

project was generated. So that the program can also control the hardware for the
interface, two important lines must follow the description (shown in green):

 #include "TA_Firmware\TAF_00D.h"
 #include "TA_Firmware\TAF_00P.h"

 In the header file "TAF_00D.h," there is a definition of the "transfer area," a data

structure, through which the program "communicates" with the hardware in the
interface.

 In the header file "TAF_00P.h," there is a definition of the firmware macros to call up

functions within the firmware.

 Both of these files must therefore be contained in every program. In addition, the file

"TAF_00.c" must be added to every program. You can find this in the area on the left
under "C source files." This can be added to the project using the "Add" function.

 The program interface is normally used for the development of "Embedded Systems."

For example, control software is prepared for heating control in an apartment house.
Normally, you cannot "end" such software and therefore a "main" function is started one
time after it is turned on and should continue to work. Every C program starts with the
"main()" procedure. Therefore, do not change this name.

 In the Robo interface, the program may end itself if this is necessary. When ending, the

firmware expects a numerical value of 0 to 225. This value determines if the red error
LED "blinks" after the program stops. Some changes must be made so that this works.

 Page 20 of 32 Pages

Fischertechnik C Compiler for Robo Interface

 The "void" before ""main" must be changed to "UCHAR" so that the function can provide

a value.

 UCHAR main(void)

 Then, at the end of the main fucntion a "return" with a value must be given.

 return (0);

The result now looks like this.

- Now the first test: click on the button, "Build All," (left next to "Debug") or use "Build /

Build All" in the menu bar (key "F7" also works). The compiler now translates the
program into machine instructions.

 Page 21 of 32 Pages

Fischertechnik C Compiler for Robo Interface

- In the lower output window, some messages are now running through very quickly.

When the compiler and the linker are finished, "0 Errors" should appear there. As soon
as the trial period of 60 days has expired, a "warning" always appears that tells you that
only programs with a size of 64 k can be generated.

- Now that it is certain that the instructions are correct, you can start with the preparation

of the program. You can find the finished Blink1 program in the examples. Also please
note the instructions in the following chapter.

 Page 22 of 32 Pages

Fischertechnik C Compiler for Robo Interface

 Page 23 of 32 Pages

8 Instructions for Programing

The querying of the inputs and control of the outputs is done through a "transfer area"
(communication memory area). This area is matched with the hardware every 10 ms
through the interface firmware after the program is started. Programers who have already
worked with the FtLib are familiar with this principle. The structure of the transfer area is
found in the folder, TA_Firmware, in the header file "TAF_00D.h." The transfer area is
identical to the FtLib version. The start address for the transfer area is fixed in the firmware
at 0x400 in the RAM.

Since the linker must "bind" the program to the absolute hardware addresses of the
interface, the compiler must be notified of these addresses. This is done in the file "
ProgNr.inc" in the StartupCode folder. Here, the memory area, for which the program is
generated, can be sufficiently indicated by FLASH1, FLASH2 or RAM1. FLASH1 is always
used in the examples.

Note!
The FtLoader program reads out the current memory address of the interface, which is connected, and
displays the values. In future firmware versions of the interface, it could be possible that something on the
addresses changes and these can then be changed in the "ncrt0.a30" file.

That, which is normally not possible for embedded programs, is allowed here: "main()"
may end itself and then returns to the interface firmware! When main() returns to the
firmware, the firmware expects a return code. Therefore, the main() routine should be
declared as a function.
The red error LED in the interface can be switched by the return code. A value of 1 to 5
corresponds to the number of blinks. For a value greater than five, the red LED blinks
continuously until the PROG key is pressed. For a value of "0," it does not blink.

9 Low Level Programing

With the C Compiler, it is possible to generate programs, which can damage the processor
in the interface! In contrast to programs for the fischertechnik RoboPro software, direct
access to the hardware ports of the processor can be attained using your own C program.
Since for this modern processor, a large part of the internal hardware is configured by
software instructions, it is possible that if incorrect settings are made then the processor
will no longer work properly with the remaining interface hardware and unfortunately
damage could occur due to this. In particular for access to memory through markers, there
is the big danger that the processor register can be reached through this.

Therefore, the manufacturer must reject warranty claims for damaged processors due to
defective C programs.

Fischertechnik C Compiler for Robo Interface

 Page 24 of 32 Pages

10 The Transfer Area

The querying of the inputs and control of the outputs is done through a "transfer area"
(communication memory area). This area is matched with the hardware every 10 ms
through the interface firmware after the program is started. Programers who have already
worked with the FtLib are familiar with this principle. The structure of the transfer area is
found in the folder, TA_Firmware, in the header file "TAF_00D.h." The transfer area is
identical to the FtLib version. The start address for the transfer area is fixed in the firmware
at 0x400 in the RAM.

So that this can be used in a C program, both of the following lines must be at the start of
the program:

 #include "TA_Firmware\TAF_00D.h"
 #include "TA_Firmware\TAF_00P.h"

 In the header file "TAF_00D.h," there is a definition of the "transfer area," a data

structure, through which the program "communicates" with the hardware in the
interface.

 In the header file "TAF_00P.h," there is a definition of the firmware macros to call up

functions within the firmware.

 Both of these files must therefore be contained in every program. In addition, the file

"TAF_00.c" must be added to every program (see examples).

10.1 Digital Inputs E1-E32
The bits for the digital inputs are set at "0" for an open input and for an input, which is
connected with "+", to "1." Inputs, which are not available, (lack of expansion modules) are
set at "0." In addition, all 32 inputs are again stored starting with Base+0x100 in a 16 bit
variable per input (1 = input operated).

10.2 Special Inputs
The 11 buttons of the IR remote control are special inputs. The number of the button
pressed on the IR transmitter and, the information about if code "1" or code "2" was
activated, is stored in the memory position Base+0x0E. In addition, all buttons are stored
again in 16 bit variables (as for digital inputs).

10.3 Analog Inputs
The analog inputs are stored as 16 bit values with a value range of 0 to 1023. In addition,
the firmware calculates the resistance value (in ohms) for the AX and AY inputs.
Therefore, their value range goes from 0 to 5700.

10.4 16 Bit Timer
The six 16 bit timers with increments from 1 ms, 10 ms, 100 ms, 1 s, 10 s and 60 s are
freely available. There is no fixed relation between the individual timer values, which
means that the 10 ms value is, for example, not 10 times the 1 ms value.

Fischertechnik C Compiler for Robo Interface

 Page 25 of 32 Pages

10.5 Outputs
The outputs are controlled by a polarity bit, an energy saving bit and a PWM value byte.
The PWM value and the polarity bit are given per individual output. The energy saving bit
is given per output pair. If the polarity bit is "0," the output is set to ground and if the
polarity bit is "1" then the output is set to power (9V). If the energy saving bit is "1" then an
output pair is switched high resistance after a delay (1 sec.) if both associated polarity bits
are set to "0". If the energy saving bit is set to "0" then the associated output pair is not
high resistance switched. Through the PWM byte, which has a value range of 0 to 7, the
pulse width of the output is set in eight steps, for example, in 12.5 percent steps between
12.5. percent and 100 percent.

Instructions for Download Programs
The output settings are copied every 10 ms by the firmware in a separate data area and the PWM values are
calculated if the bit "UpdateOutputs" (UA1) is set to BASE+0xE1. If UA2 is set instead of UA1 then the
outputs are only written one time for the next 10 ms interrupt. After the outputs are set, the UA2 bit is erased.

After the initialization of the interface (turning on), all energy saving bits are set to "1". This
functionality is activated as a standard.

10.6 Installed Expansions Mode
Starting with Base+0xE6, the number of the installed I/O extension modules is found.

Fischertechnik C Compiler for Robo Interface

 Page 26 of 32 Pages

11 Calling Up Firmware

In addition to the transfer area, the interface firmware offers some functions, for example,
sending a message. These are described in the following.
The callup is done through macros, which are defined in the file "TAF_00P.h" in the folder
"TA_Firmware".

11.1 void SetFtDeviceReset (char mode)
 mode: 0 = Cold start / RESET
 (turn on like interface)

 1 = PROG end
 (init, without RAM erasing)

This procedure stops the application program. When the callup is made, it can be done so
that the interface makes a complete "Restart" (hardware reinitialized, erases RAM) or only
the hardware and the firmware are reinitialized without deleting the RAM.

11.2 void SetFt1msTimerTickAddress(void far *())
With this function, the application program notifies the firmware of the address of the timer
routine. After this, this is called up every 1 ms. The functionality can be turned off with the
value ZERO.

Fischertechnik C Compiler for Robo Interface

 Page 27 of 32 Pages

11.3 void SetFtDeviceCommMode (BYTE mode, BYTE value1, UINT *pData)

This routine sets the mode of the serial interface in the interface. After it is turned on, the
interface is in the normal mode. In this mode, the interface can be controlled in the online
mode.
In the "Message Mode", messages can be sent from one interface to another through the
serial interface.

The mode, which is set, remains active until a new mode is set with this function. By
pressing the "Port" button on the interface, the mode IF_COM_ONLINE is reset if the interface
is in the AutoScan mode.

The mode, which is currently set, can be queried through "IF_COM_PARAMETER". The
result is stored after the transferred address, to which the "pData" points.

Modes

Mode = IF_COM_ONLINE: Set standard mode
 The interface is set to the standard mode.
 (Parameters: 38400,n,8,1).

Mode = IF_COM_MESSAGE: Messages sent through serial
 interface.

Mode = IF_COM_PARAMETER Read out mode
 Result:
 pData: Highbyte = Value if mode = Data
 Lowbyte = Mode

11.4 void GetRfParameter (BYTE *pData)
This function reads out the parameters of the RF module and stores these after the
address, to which the pData points. The data field must have a size of at least 4 bytes.

pData[0] Error code
 ERROR_SUCCESS: No error
pData[1] Mode
 0=Module turned off
 1=Module active
pData[2] Frequency
pData[3] Module number (radio call number)

11.5 void ClearFtMessageBuffer (void)
This function erases the message buffer in the interface.

Fischertechnik C Compiler for Robo Interface

 Page 28 of 32 Pages

11.6 void SetFtMessageReceiveAddress (void *())
With this function, the application program notifies the firmware of the address of the
receive message function. If p=0 is transferred, then no function is called up upon the
receipt of a message by the firmware. Then this function is called up for every incoming
message. The interface firmware then transfers a "near" marker to the message received.

11.7 BYTE SendFtMessage (BYTE hwid, BYTE subid, ULONG message,
 UINT uiWaitTime, UINT uiOption)

This function sends a message. The actual message consists of a 16 bit message ID in
Lowword of the parameter "message" and a 16 bit message value in Highword of the
parameter "message". A physical channel is selected with the parameter "hwid".

MSG_HWID_SELF (0) Send message to self

MSG_HWID_SER (1) Send message to serial interface

MSG_HWID_RF (2) Distribute message over radio
 (but do not send to self)

MSG_HWID_RF_SELF (3) Distribute message over RF
 (also to self)

Through the subchannel ID, a physical channel can be divided into several logical
channels. IDs from 0 tof 219 are permitted. The values from 220 to 255 are reserved for
internal tasks.

The return value is "0" in case of success, otherwise an error number. If there is still space
in the buffer, the function returns immediately, otherwise the function waits at the
maximum for the time in ms indicated in "uiWaitTime."

The message system requires about 5 ms for the distribution of a message. Since in
particular within loops, this function could be called up significantly more often, the number
of messages to be sent can be optimized through the parameter "uiOption". With this you
can prevent the same message from being sent several times.

Fischertechnik C Compiler for Robo Interface

 Page 29 of 32 Pages

If messages are also to be sent to the serial interface of the interface (bHwId =
MSG_HWID_SER) then the mode IF_COM_MESSAGE must be activated before the start
of the transfer thread with the function " SetFtDeviceCommMode()".

Return values
ERROR_SUCCESS No error
FTLIB_ERR_MSG_BUFFER_FULL_TIMEOUT TimeOut, message could not
 sent within the indicated time

Call: BYTE hwId Hardware-ID

MSG_HWID_SELF (0x00): Copied direct into the own receive buffer
MSG_HWID_SER (0x01): Sent through interface RS232
MSG_HWID_RF (0x02): Over radio only to other modules
MSG_HWID_RF_SELF (0x03): Over radio also to self

 BYTE subId Logical channel, the IDs are permitted
 0 to 219. The values from 220 to 255
 are reserved for internal tasks
 ULONG message Lowword: 16 bit message ID
 Highword: 16 bit message
 UINT uiWaitTime If the internal buffer is full,
 this parameter (in ms) can be used to set
 how long to wait until
 the function returns.
 UINT uiOption Transmission options

MSG_SEND_NORMAL (0): The message is written directly into the transmit buffer

MSG_SEND_OTHER_THAN_LAST (1): The message is not sent if an
 identical message (bHwId, bSubId, dwMessage)
 is at the end of the buffer. If the buffer is empty or
 a different message is at the end of the buffer then
 the message is sent.
MSG_SEND_IF_NOT_PRESENT (2): The message is not sent if an identical message
(bHwId, bSubId, dwMessage)
 is somewhere in the buffer. If the buffer is empty, then
the
 message is sent.

Return: Error-Code (in R0L)
 ERROR_SUCCESS No error
 FTLIB_ERR_MSG_BUFFER_FULL_TIMEOUT Buffer is full, message could not be tranmitted in the
 time given.

11.8 void FtDelay (UINT)
This procedure waits for the time given (in ms).

Fischertechnik C Compiler for Robo Interface

 Page 30 of 32 Pages

11.9 void SetFtDistanceSensorMode (UCHAR ucMode, UCHAR ucTol1,
 UCHAR ucTol2, UINT uiLevel1,
 UINT uiLevel2, UCHAR ucRepeat1,
 UCHAR ucRepeat2)

This routine initializes the D1/D2 input on the interface for the connection of the
fischertechnik distance sensor or for the measurement of voltages in the range of 0 to 10
volts.

Important Information
Since the mode of the D1 / D2 inputs can be set with software, we recommend that no voltages be "directly"
fed into these connections in order to avoid damage to the interface due to software errors. Since the inputs
are high resistance, a resistance of about 220 ohms to 470 ohms should be connected directly to the D1 /
D2 jack (series connection). We recommend that the voltage to be measure be only connected "after this."

Call: FT_HANDLE hFt Handle of the device
 DWORD dwMode Mode of the connections:
 IF_DS_INPUT_VOLTAGE (0x00) =
 inputs measure voltages
 IF_DS_INPUT_DISTANCE (0x01) =
 Inputs for ft distance sensor

The following parameters are depedendt on the mode, which is set.
For dwMode = IF_DS_INPUT_DISTANCE the following applies:
 DWORD dwTol1 Tolerance range D1
 Recommended: IF_DS_INPUT_TOL_STD (20)
 DWORD dwTol2 Tolerance range D2
 Recommended: IF_DS_INPUT_TOL_STD (20)
 DWORD dwLevel1 Threshold value D1
 DWORD dwLevel2 Threshold value D2
 DWORD dwRepeat1 Repeat value D1
 Recommended: IF_DS_INPUT_REP_STD (3)
 DWORD dwRepeat2 Repeat value D2
 Recommended: IF_DS_INPUT_REP_STD (3)
 The distance sensor works with infrared light and can therefore experience interference from
outside influences
 such as IR hand transmitters. In order to prevent this interference, the provision of the
 repeat value can be used to set how often the "same" measured value must
 measured until this is considered to be valid. Since the measured values may fluctuate from
 one measurement to the next, there is a tolerance range. As soon as a
 new measurement starts, the following measured values may change within this
 "window" without causing a restart of the measurements. The
 threshhold value determines the level for the evaluation as "digital" distance sensors.
 Below the threshhold value, a logical "0" is sent and above this a "1" is sent.
 In the transfer area, the conditions determined are stored by the firmware in the
 memory positions "Base+0x0C" (digital) and "Base+0x1C / Base+0x1E" (analog).

Fischertechnik C Compiler for Robo Interface

 Page 31 of 32 Pages

12 Communication

Several Robo Interfaces can exchange messages with each other through the RS232
interface and the radio interface. Basically, the messages consist of a 16 bit message ID
and a 16 bit value.

The communication is done on radio channels (frequencies). A maximum of eight radio
interfaces can exchange messages on the same radio channel. For this, every module has
its own "ID" number, which can be set in the range from 1 to 8. The PC module always has
the ID number "0". In addition, messages can be sent to the serial interface of the interface
and received by this serial interface.

Every radio channel is divided into 256 logical subchannels, which serve for the structuring
of the communication. For this, a message is always distributed to all participants
("broadcasting"). Every message consists of five data bytes:
 SubId Number of the subchannel (1 byte)
 Message Message data (4 bytes)
 B1:B0: Message ID (Low-Word)
 B3:B2: Message (High-Word)
There is no feedback to the "Sender" to confirm that the message was received.

The communication is controlled by the PC module, which works as a message router.

12.1 Serial Messages
C programs can also send and receive messages through the serial interface. Every
message is sent individually through the serial interface. For this, the mode in the interface
must be changed with the function "SetFtDeviceCommMode()". The changed mode is then
indicated by the continual illumination of the COM LED on the interface. By pressing the
"Port" button, the mode is reset, but of course this can be done through the software as
well. It is also possible to exchange messages between two Robo Interfaces through the
serial interface. The proper connection cable for this (X cable) can be obtained from the
fischertechnik Individual Parts Service.

12.2 Firmware Support
The interface firmware offers the function "SendFtMessage()" for the data transport. When
sending, a physical channel can be selected using a hardware ID. If no second interface or
no radio interface is available, you can send the message "to yourself." You can send the
message to the serial interface or have it distributed by radio (RF) to other modules by the
message router.

Fischertechnik C Compiler for Robo Interface

 Page 32 of 32 Pages

12.3 Receiving Messages
As soon as the interface receives a message, it calls up a callback routine and transfers a
"near" marker to this for the message received. Using the function
"SetFtMessageReceiveAddress()", the address of this message processing function can
be transferred to the firmware. There is an example of this in the scope of delivery of the C
Compiler. The message processing function stores the message in a buffer of the C
program. The C program then picks up the message from the cache memory at a later
time.

13 Debugging

The debugging of programs in the interfaces is not possible at this time because Renesas
does not publish the control codes for the debugger interface for its tools.

As an alternative, the memory areas in the interface RAM can be read out using the
FtLoader. The variables "ucDbg1F0" … "ucDbg1FF" (Base+0x1F0..0x1FF) are avaible for
this in the transfer area. The setting of values in the RAM is also possible after a program
has been started with the FtLoader.

14 Revision
Version 0.65: Complete revision
 -Renaming ClearFtMessagePuffer() to ClearFtMessageBuffer()
Version 1.66a -Renaming of 0.65 to 1.66a
 -Revision of the storage layout
 -Support of the interface firmware 01.66.00.03

